

Mapping Greater Sage-Grouse Preliminary Priority Habitat in the Bi-State DPS

Technical Advisory Committee

Purpose

Develop a scientifically defensible decision support tool (models and maps) for management of sage-grouse populations

FOCUS MANAGEMENT EFFORTS ON THE AREAS MOST MEANINGFUL FOR SAGE-GROUSE POPULATIONS

Hierarchical Approach

Decision support tool to map areas important to sage-grouse populations

Microhabitat objectives – factors that influence sage-grouse populations

Hierarchical Approach

Decision support tool to map areas important to sage-grouse populations

Decision Support Mapping Tool

Data-driven approach to:

- Map habitat (seasonal and composite)
- Identify factors that influence grouse populations
- Identify management action and where they are needed
- Provide a basis to evaluate those actions

Data Input for Mapping Approach

Existing and newly acquired data

Maps

Good Existing vegetation layers (i.e., 30-m resolution)

Better High resolution map layers (i.e., 5-m)

Telemetry (sage-grouse locations)

Good Individual grouse location data

Better Individual vital rate information (i.e., nest survival)

Data Input for Mapping Approach

Existing and newly acquired data

Maps

Good Existing vegetation layers (i.e., 30-m resolution)

Better High resolution map layers (i.e., 5-m)

Telemetry (sage-grouse locations)

Good Individual grouse location data

Better Individual vital rate information (i.e., nest survival)

Bi-State Distinct Population Segment

Composite Land Cover Map of Bi-State DPS

15 Model Variables at 2 spatial scales

Pinyon-juniper phases

Three sagebrush communities

Upland and lowland nonsagebrush shrubland communities

Annual and Perennial Grasslands

Agricultural areas

Two topographic variables

Roads

Urbanization Index

Land cover types

Pinyon-Juniper Land Cover Types

Delineated Pinyon-Juniper into Establishment Phases

Phase 0

sagebrush community with no encroachment

Phase I

<10% tree canopy cover

Phase II

≥10% and <50% cover

Phase III

≥50% cover

Topographical Factors

Modeling Procedure

Five Steps:

- 1) Compile GIS coverages for all areas
- 2) Overlay telemetry points and generate random points
- 3) Extract environmental information from points
- 4) Estimate model parameters (coefficients) of each environmental factor by contrasting the used from the random points
- 5) Predict the probability of occurrence for each grid cell using the model parameters

Building the Model – Bodie Hills Example

Modeling Procedure

Five Steps:

- 1) Compile GIS coverages for all areas
- 2) Overlay telemetry points and generate random points
- 3) Extract environmental information from points
- 4) Estimate model parameters (coefficients) of each environmental factor by contrasting the used from the random points
- 5) Predict the probability of occurrence for each grid cell using the model parameters

Overlay Grouse Telemetry Locations

Generate Random Points

Modeling Procedure

Five Steps:

- 1) Compile GIS coverages for all areas
- 2) Overlay telemetry points and generate random points
- 3) Extract environmental information from points
- 4) Estimate model parameters (coefficients) of each environmental factor by contrasting the used from the random points
- 5) Predict the probability of occurrence for each grid cell using the model parameters

Extract and Model Data

Contrast the used versus the available points to estimate the effect of each model variable

Logit (Y) =
$$\theta_1 X_1 + \theta_2 X_2 + \theta_3 X_3 + ... + \theta_n X_n$$

% sagebrush

% phase I conifer

% phase II

and III conifer

Apply coefficients to map layers to calculate the probability of use per pixel

$$RSF = \exp(\theta_1 X_1 + \theta_2 X_2 + \theta_3 X_3 + ... + \theta_n X_n)$$

Modeling Procedure

Five Steps:

- 1) Compile GIS coverages for all areas
- 2) Overlay telemetry points and generate random points
- 3) Extract environmental information from points
- 4) Estimate model parameters (coefficients) of each environmental factor by contrasting the used from the random points
- 5) Predict the probability of occurrence for each grid cell using the model parameters

Resource Selection Function Map Bodie Hills Example

Over 10 years of telemetry data

USGS, CDFG, NDOW, BLM, USFS, UNR, UID

- >15,000 locations
- >200 sage-grouse
- Year-round

Three independent datasets:

- Model Training
- Category Training
- Validation

Comparison between Maps

TAC Habitat Model

NDOW Habitat Categorization

Comparison between Maps

TAC Habitat Model

Core Area, LAWG, Preliminary Habitat

 Overlay second data set to identify categories

 1,300 independent points (different grouse)

Sage-Grouse Habitat Suitability of Bi-State DPS with Categorical Training Data Set

EXAMPLE

Leks (traditional breeding grounds) on the near the edge of priority habitat

Potential effects of nearby disturbance

Edge Effects - Utilization Distribution Analysis

- 1) Calculated seasonal use areas (utilization distribution; UD) for each grouse by season
- 2) Calculated volume of UD within each 30-m increase distance from lek
- 3) Diminishing returns in UD analysis with increasing buffer distance

0 1.753.5

7 10.5 14 Kilometers

Diminishing Returns

Distance to Nests Analysis

95% Percentile of the Distribution

5.21 km

(range 0.16 - 8.35)

Area with buffers

1,371,760 acres (30%)

Areas without buffers

1,047,020 acres (23%)

Model Validation (>1,500 independent telemetry points)

Greater Sage-Grouse Preliminary Priority Habitat with Validation Data

Greater Sage-Grouse Preliminary Priority Habitat No Buffers with Validation Data

GPS Technology

Acknowledgments

Nevada Department Of Wildlife California Department of Fish and Game **University of Nevada Reno Idaho State University University of Idaho Bureau of Land Management (CA) Bureau of Land Management (NV) US Fish and Wildlife Service USDA Forest Service**

